

Blue lines indicate the area meeting the ISRA Criteria; dashed lines indicate the suggested buffer for use in the development of appropriate place-based conservation measures

TRIPOLITANIA ISRA

Mediterranean and Black Seas Region

SUMMARY

Tripolitania is located along the coast of Libya in the southern Mediterranean Sea. The area is characterised by a wide continental shelf that joins the Libyan land mass to the Malta and Medina Banks with habitats such as seagrass beds, rocky ledges, and sand deposits. The area overlaps with an Ecologically or Biologically Significant Marine Area and a Key Biodiversity Area. Within this area there are: **threatened species** and **reproductive areas** (Common Smoothhound *Mustelus mustelus*).

CRITERIA

Criterion A – Vulnerability; Sub-criterion C1 – Reproductive Areas

-	_
IBYA	
-	-
0-200 metro	es
-	-
5 ,423.4 km ²	
-	_

DESCRIPTION OF HABITAT

Tripolitania stretches >150 km along the Libyan coast and has a wide continental shelf with a high diversity of ecosystems. It is characterised by rocky areas interspersed with sandy areas and includes seagrass meadows. Along the coast, there is a series of regular rocky ledges down to a depth of ~30 m, creating rocky platforms which are covered by sand deposits of varying thickness (Shakman & Kinzelbach 2007).

The area overlaps with the Sicilian Channel Ecologically or Biologically Significant Marine Area (CBD 2023), and the Karabolli Key Biodiversity Area (KBA 2023).

This Important Shark and Ray Area is benthopelagic and is delineated from inshore and surface waters (0 m) to 200 m based on the bathymetry of the area.

ISRA CRITERIA

CRITERION A - VULNERABILITY

The one Qualifying Species within the area is considered threatened with extinction according to the IUCN Red List of Threatened Species[™]. The Common Smoothhound is assessed as Endangered (Jabado et al. 2021).

SUB-CRITERION C1 - REPRODUCTIVE AREAS

Tripolitania is an important reproductive area for one shark species.

All lifecycle stages of the Common Smoothhound were observed at monthly landing site surveys conducted between November 2015 to December 2016 (Kara et al. 2019a). Libyan fishers use an artisanal fleet that operates within this area and therefore almost all sharks found at these landing sites are caught on the continental shelf. Of 370 individuals recorded, 190 (51%) were female and measured 46.8–168 cm total length (TL). Maximum size for the species in the region is 168 cm TL for females and 145 cm TL for males (Saïdi et al. 2008; Kara et al. 2019a).

Mature females made up to 53% of records in March and April 2016 (from a total of 63 individuals). Additionally, 19 pregnant females were recorded year-round (10% of females) with a total of 282 embryos (4-12 per female). Embryos measured between 12-29 cm TL (size-at-birth is 34-42 cm TL in the Mediterranean Sea; Saïdi et al. 2008). The smallest embryos were observed in September (7.5 cm TL), and the largest in March (29 cm TL), suggesting that parturition occurs in April-May (Kara et al. 2019a). Additionally, of the 370 individuals recorded, 62 could be considered young-of-the-year (17%) measuring 40-59 cm TL (Kara et al. 2019a). A further 92 immature individuals (25%) measured 60-69 cm TL (Kara et al. 2019a), likely aged 1-2 years.

Acknowledgments

Esmail Shakman (Tripoli University, Libyan Society of Artisanal Fishery Friends), Khaled Etayeb (Tripoli University), Abdalha ben Abdalha (Tripoli University), Mahmoud Salih (Tubruk University, Marine Biology Research Centre), Akram Turki (Marine Biology Research Centre), Mohamed Elhajaji (Libyan Society of Artisanal Fishery Friends, Marine Biology Research Centre), Ryan Charles (IUCN SSC Shark Specialist Group - ISRA Project), and Jenny Bortoluzzi (IUCN SSC Shark Specialist Group - ISRA Project) contributed and consolidated information included in this factsheet. We thank all participants of the 2023 ISRA Region 3 - Mediterranean and Black Seas workshop for their contributions to this process.

This factsheet has undergone review by the ISRA Independent Review Panel prior to its publication.

This project was funded by the Shark Conservation Fund, a philanthropic collaborative pooling expertise and resources to meet the threats facing the world's sharks and rays. The Shark Conservation Fund is a project of Rockefeller Philanthropy Advisors.

Suggested citation

IUCN SSC Shark Specialist Group. 2023. Tripolitania ISRA Factsheet. Dubai: IUCN SSC Shark Specialist Group.

QUALIFYING SPECIES

Scientific Name	Common Name	IUCN Red List Category	Global Depth Range (m)	ISRA Criteria/Sub-criteria Met								
				Α	В	C1	C2	C3	C4	C5	Dı	D2
SHARKS												
Mustelus mustelus	Common Smoothhound	EN	5-800	Х		Х						

SUPPORTING SPECIES

Scientific Name	Common Name	IUCN Red List Category					
SHARKS							
Alopias superciliosus	Bigeye Thresher	VU					
Alopias vulpinus	Common Thresher	VU					
Cetorhinus maximus	Basking Shark	EN					
Isurus oxyrinchus	Shortfin Mako	EN					
Lamna nasus	Porbeagle	VU					
Mustelus punctulatus	Blackspotted Smoothhound	VU					
Oxynotus centrina	Angular Roughshark	EN					
Scyliorhinus stellaris	Nursehound	VU					
Sphyrna lewini	Scalloped Hammerhead	CR					
Sphyrna zygaena	Smooth Hammerhead	VU					
Squalus acanthias	Spiny Dogfish	VU					
Squatina oculata	Smooothback Angelshark	CR					
Squatina squatina	Angelshark	CR					
RAYS	L						
Aetomylaeus bovinus	Duckbill Eagle Ray	CR					
Gymnura altavela	Spiny Butterfly Ray	EN					
Mobula mobular	Spinetail Devil Ray	EN					
Myliobatis aquila	Common Eagle Ray	CR					
Raja radula	Rough Skate	EN					
Rhinobatos rhinobatos	Common Guitarfish	CR					
Torpedo marmorata	Marbled Torpedo Ray	VU					
Torpedo torpedo	Ocellate Torpedo	VU					
CHIMAERAS							
Chimaera monstrosa	Rabbitfish	VU					

IUCN Red List of Threatened Species Categories are available by searching species names at <u>www.iucnredlist.org</u> Abbreviations refer to: CR, Critically Endangered; EN, Endangered; VU, _Vulnerable; NT, Near Threatened; LC, Least Concern; DD, Data Deficient.

SUPPORTING INFORMATION

There are additional indications that the area is important for Common Smoothhound feeding.

Common Smoothhounds take advantage of the highly productive coastal habitats of Tripolitania at various lifecycle stages (Kara et al. 2019b). Of the 269 Common Smoothhound stomachs examined between November 2015 and November 2016, 75% contained prey items. The diet consisted of five major groups: teleost fishes, crustaceans, cephalopoda, nemertea, and polychaeta (Kara et al. 2019b).

Teleosts were the most important prey, constituting 50% of the total Index of Relative Importance (IRI%), followed by crustaceans (%IRI = 34). Cephalopods, nemertea, and polychaetes were of comparatively low importance (Kara et al. 2019b). In other parts of the Mediterranean Sea, Common Smoothhounds feed primarily on crustaceans, followed by teleosts and cephalopods (Morte et al. 1997; Saïdi et al. 2009; Di Lorenzo et al. 2020). However, in this area, pelagic and benthopelagic teleosts make up a majority of its diet, in all seasons except for the boreal autumn, followed by crustaceans (Kara et al. 2019b). These differences in prey selectivity in this area compared to other Mediterranean Sea locations indicate that this area may be important for feeding for the species where they take advantage of the productive coastal environment.

REFERENCES

Convention on Biological Diversity (CBD). 2023. Sicilian Channel. Ecologically or Biologically Significant Marine Areas. Available at: https://chm.cbd.int Accessed May 2023.

Di Lorenzo M, Vizzini S, Signa G, Andolina C, Boscolo Palo G, Gristina M, Mazzoldi C, Colloca F. 2020. Ontogenetic trophic segregation between two threatened smooth-hound sharks in the Central Mediterranean Sea. *Scientific Reports* 10(1): 11011. https://doi.org/10.1038/s41598-020-67858-x

Jabado RW, Chartrain E, Cliff G, Da Silva C, De Bruyne G, Derrick D, Dia M, Diop M, Doherty P, El Vally Y, et al. 2021. *Mustelus mustelus. The IUCN Red List of Threatened Species* 2021: e.T39358A124405881. https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T39358A124405881.en

Kara AF, Hajaji M, Ghmati H, Shakman E. 2019a. Growth & reproduction of Mustelus mustelus (Chondrichthyes: Triakidae) in the south Mediterranean (Libyan coast). Libyan Journal of Ecological and Environmental Sciences and Technology 1(2): 31–38.

Kara AF, Hajaji M, Ghmati H, Shakman E. 2019b. Food and feeding habits of *Mustelus mustelus* (Linnaeus, 1758) (Chondrichthyes: Triakidae) along the western coast of Libya. *Annales Series Historia Naturalis* 29(2): 197–204. https://doi.org/10.19233/ASHN.2019.19

Key Biodiversity Areas (KBA). 2023. Key Biodiversity Areas factsheet: Karabolli Key. Available at: http://www.keybiodiversityareas.org Accessed May 2023.

Morte S, Redon MJ, Sanz-Brau A. 1997. Feeding habits of juvenile *Mustelus mustelus* (Carcharhiniformes, Triakidae) in the western Mediterranean. Cαhiers de Biologie Marine 38(2): 103–108. https://api.semanticscholar.org/CorpusID:88902926

Saïdi B, Bradaï MN, Bouaïn A. 2008. Reproductive biology of the smooth-hound shark *Mustelus mustelus* (L.) in the Gulf of Gabès (south-central Mediterranean Sea). *Journal of Fish Biology* 72(6): 1343-1354. https://doi.org/10.1111/j.1095-8649.2008.01801.x

Saïdi B, Enajjar S, Bradaï MN, Bouaïn A. 2009. Diet composition of smooth-hound shark, *Mustelus mustelus* (Linnaeus, 1758), in the Gulf of Gabès, southern Tunisia. *Journal of Applied Ichthyology* 25: 113-118. https://doi.org/10.1111/j.1439-0426.2009.01306.x

Shakman E, Kinzelbach R. 2007. Distribution and characterization of Lessepsian migrant fishes along the coast of Libya. Acta Ichthyologica et Piscatoria 37(1): 7-15. https://doi.org/10.3750/AIP2007.37.1.02